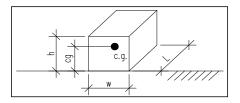
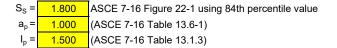
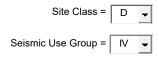

Project: TORUS page: 1 of 2


Date: 08/16/23 Engineer: BMH

RBI TORUS 1000 INDOOR DUAL FUEL - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)


Slab on Grade Applications Only


Equipment Parameters:

Seismic Parameters:

$R_p =$	1.500	(Default value for Anchorage per ASCE 7-16 13.6-1)
F _a =	1.032	(ASCE 7-16 Table 11.4-1)
$S_{MS} = F_a * S_s =$	1.858	(ASCE 7-16 Eqn. 11.4-1)
S _{DS} =2/3*S _{MS} =	1.239	(ASCE 7-16 Eqn. 11.4-3)

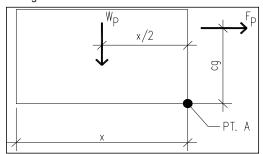
Seismic Design Category = D

Seismic Force:

$$F_p = (0.4*a_p*S_{DS}*W_p)/(R_p/I_p) = \begin{tabular}{c} 273.9 LBS. (ASCE 7-16 Eqn. 13.3-1) \\ Upper Limit: $F_{pMAX} = 1.6*S_{DS}*I_p*W_p = \begin{tabular}{c} 1643.7 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ Lower Bound: $F_{pMIN} = 0.3*S_{DS}*I_p*W_p = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-3) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-3) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-3) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-3) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-3) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} 308.2 LBS. (ASCE 7-16 Eqn. 13.3-2) \\ E_{p, DESIGN} = \begin{tabular}{c} $$$

Project: TORUS page: 2 of 2

Date: 08/16/23 Engineer: BMH


RBI TORUS 1000 INDOOR DUAL FUEL - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:

Horizontal Shear Force Per Anchor:

$$R_H = F_p/4 = 77.0$$
 LBS.

Overturning Resistance About Point A:

x = 41.69 in x = lesser of L or h

$$M_{OT} = F_p * cg =$$
 LBS.-FT.

$$M_{RES} = W_{p}^{*}x/2 = 11522.7$$
 LBS.-FT. **OK, No Uplift**

Vertical Acceleration: assume $\rho = 1.0$

Ev =
$$\rho^*$$
Fp + 0.2*S_{DS}*W = **214.0** LBS. (IBC Eqn. 1617.1.1)

Force Summary Per Corner:

Component Anchorage:

$$R_{HNET} =$$
 77.0 LBS. $R_{VNETUP} =$ **0.0** LBS.

Anchors Embedded in Concrete or CMU:

1.3*
$$R_p$$
* R_{HNET} = **150.2** LBS. (IBC 1617.1.7 #2)
1.3* R_p * R_{VNETUP} = **0.0** LBS. (IBC 1617.1.7 #2)